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Abstract: In this paper a scenario-based robust optimization approach is proposed to take demand
uncertainty into account in the design of water distribution networks. This results in insight in the
trade-off between costs and performance of different designs. Within the proposed approach the
designer is able to choose the desired degree of risk aversion, and the performance of the design can
be assessed based on the water demand effectively supplied under different scenarios. Both future
water demand scenarios and scenarios based on historical records are considered. The approach is
applied to the design of a real-life water distribution network supplying part of a city in the
Netherlands. From the results the relation between costs and performance for different scenarios
becomes evident: a more robust design requires higher design costs. Moreover, it is proven that
numerical optimization helps finding better design solutions when compared to manual
approaches. The developed approach allows water utilities to make informed choices about how
much to invest in their infrastructure and how to design it in order to achieve a certain level of
robustness.

Keywords: water distribution networks; design; optimization; robustness; uncertainty; water
demand

1. Introduction

The problem of water distribution network (WDN) design consists in the definition
of improvement decisions that can optimize the system given a certain objective, or
objectives. These decisions can be made under three assumptions: certainty, risk and
uncertainty [1,2].

When assuming certainty, the input parameters, such as water demand, are
considered to be deterministic and well-known. Practice shows that water utilities often
take into account a peak factor (according to equations available in literature), or, for
instance, the maximum (hourly) water demand of the past ten years (as done in the
Netherlands) for the design of WDN. Sometimes, safety factors are considered to take
uncertainty into account. This deterministic approach leads to a design that performs well
for the specific water demand considered but may underperform if the water demand
turns out differently.

Decision making under risk means that the input parameters are recognized to be
uncertain and are assumed to follow certain probability distributions. The problems that
consider risk are known as stochastic optimization problems. In academic research,
uncertainty in water demand is often taken into account by means of stochastic
approaches, which are computationally very demanding, and therefore less attractive for
application to optimization of real-life WDN.

Scenario-based robust optimization can be seen as a more viable approach in this
context and leads us to decision making under uncertainty. In these problems no
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information about the probability distributions is considered. Instead, uncertainty is taken
into account by means of a limited number of scenarios, lessening the computational
burden, and, not less important, is easy to understand by water utilities and is more in
line with current practice. Both stochastic and robust optimization problems are aimed at
finding solutions that perform well under any possible realization of the random input
variables.

1.1. Water Demand

Water demand is one of the most important and uncertain aspects in the context of
drinking water distribution systems. In order to properly answer questions about the
design and management of these systems, it is therefore essential to understand and take
into account the inherent variability and uncertainty regarding present and future water
demand. Water demand varies with the behavior and habits of people, as well as the
surrounding environment. A first step in modelling water demand therefore requires the
consideration of aspects such as the type of consumer (residential, commercial and
industrial uses all have different specific demand needs and patterns), type of day
(working or weekend days, holidays or vacation periods lead to different consumption
patterns) and weather (both the total daily demand, peak and demand pattern vary with
temperature and precipitation). Specifically for residential use, aspects such as the type of
house (for instance with or without garden), household composition, and living area
(households in rural, urban or suburban areas have different demand patterns) are also
important [3].

The literature is rich in approaches for modelling water demand. Some examples
consider regression analysis and black box models, including artificial neural networks,
random forests, support vector regression, among others [4]; end-use models, such as
SIMDEUM for modelling both residential and non-residential demand [5]; future scenario
studies [6]; short-term demand forecasting (48 h) for operational uses, based on historical
data and measurements [7], or auto-regressive integrated moving average and machine
learning, in order to construct scenarios with similar statistics of the historical
measurements [8]; linear demand growth models considering different phases in a
planning horizon [9,10]; machine learning techniques, to determine extreme values for
water demand in the future based on climate scenario’s and vacation behaviour [11];
statistical approaches and analysis of demand time series [12-14], also including scaling
laws [15,16] and joint probabilities [17].

It becomes clear that depending on the purpose for which the water demand is
modelled, models can focus on the present water demand or on the future water demand,
and different scales can be considered: for a single consumer or for an entire area, on an
annual basis, on a daily basis, or on demand patterns or peak demands. It is therefore
important to choose and apply the right water demand models, with the right resolution
and on the right scale (in space and time) to the different problems concerning water
distribution systems. For instance, short-term variability (within one day) is important for
operational management, e.g., for the optimal control of pumping stations, daily patterns
with a short time resolution are important for water quality modelling, total daily demand
and daily peak demand factors are important for determining the production capacity
needed to supply a supply area and, hour or instantaneous peak water demand at the
different nodes in a network model is important for the design of a WDN.

1.2. Optimization Problems

For many years the objective of the optimal design of WDN was to satisfy demands
at least cost. The traditional deterministic optimization problem is formulated as follows:
the minimization of costs as the objective function (considered as a function of the pipe
diameters in the network) and pipe diameters as the decision variables. The constraints
are the satisfaction of demands (given by the continuity equation) and the minimum
requirements on the pressure heads at each node of the system. The input parameters,
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such as water demands, were considered as being deterministic. This deterministic
approach is a major limitation. In fact, in real-life, the demands are not foreseen with
certainty and as pointed out in the literature, deterministic approaches can lead to under
designed networks, increasing the risk of failure due to demands that exceed the design
values. From practice, we see that the opposite may also be true, as the risk averse nature
of water utilities may lead to grossly (costly) over designed networks in order to be able
to withstand any eventuality, which often lead to water quality issues. Nevertheless, the
certainty in input parameters was usually assumed in the design process, due to lack of
reliability measures and knowledge about computational feasibility [18].

In the last decades and thanks to the increase of computational capacity, researchers
began to address the optimal design of WDS under uncertainty. Several approaches have
been developed to this end, from stochastic approaches, deterministic equivalents and
surrogate approaches, to scenario-based approaches and to flexible or phased design of
WDN. Table 1 provides an overview of these approaches and some examples of literature
references.

Table 1. Concise overview of approaches for the design of WDN that include uncertainty in the decision process.

Examples of Literature

Approach Concept Options References
Reliability is usually expressed Single-objective: chance
in terms of the probability that constrained optimization
the system does not fail, where ~ problems wherein costs are [19,20]
. failure is seen as not satisfying minimized and the desired level ’
Stochastic . e s .
required nodal pressure.  of reliability is defined through a
approach . e s :
Failure probability is computed constraint.
through sampling-based =~ Multi-objective: minimization of
techniques, such as Monte Carlo  costs and maximization of [21-27]
simulation. reliability.
Safety margins are added FOSM [28,29]
(redundancy) to the constraints FORM [30,31]
or to the uncertain variables Integration method and [20]
resulting in a deterministic Sampling method
equivalent formulation of the O-method [32]
Deterministic uncertain problem.
equivalent An extra reliability assessment
through Monte Carlo
simulation is sometimes Robust—counterpart [33-36]
performed a posteriori.
Optimization problems can be
single- or multi-objective.
A surrogate for reliability is used, such as the resilience index,
which defines head surplus as a measure of reliability of the
Surrogate . 1 . L
approach system. Seyeral resilience indicators ex1‘st. The 'optlmlzatlon [37-43]
problem is often formulated as a multi-objective problem
minimizing costs and maximizing the resilience index.
The uncertainty is represented using fuzzy theory with
membership functions describing the uncertainty in demands.
Fuzzy logic The design problems is usually formulated as a multi-objective [44]

problem considering minimization of costs and maximization of
reliability.

Scenario-based

Model and solution robustness

[45-47]
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In scenario-based robust
optimization approaches the
optimization problem is solved
for a limited number of
scenarios with given
probabilities of occurrence. The Regret models

solution best performing over
all scenarios is chosen. The
performance can be expressed
by model and solutions
robustness or regret functions.

[48-51]

Phased and
flexible design
approaches

The design and a long-term Flexible design

[52-58]

planning of network
interventions are considered
side by side as the best way to
deal with uncertain future
conditions imposed to a WDN.
This results in a phased design
plan for the entire planning
horizon of a network.

Multi-criteria decision analysis

9]

Stochastic, deterministic equivalent, surrogate, and fuzzy logic approaches deal with
uncertainty by generating random demands according to a probability distribution with
defined mean and variance. In a stochastic approach, for instance, a system is designed to
meet a certain level of reliability, e.g., 99%. This means that a 1% probability of failure
does exist and how the system performs in this situation is unknown. Some authors argue
that it is better to design systems that perform “well enough” under all possible
circumstances [59]. This is where the concept of robustness emerges: robustness is
understood as the ability of the system to continue to function under different conditions.
In this context, uncertainty is also dealt with in a different way, by explicitly considering
different possible realizations of the uncertain parameters, this is, different scenarios, and
look for a solution which is feasible and as close as possible to the optimum for all of them,
instead of defining parameters through probability distributions. Scenarios differ from
predictions or forecasts in the sense that they represent a range of plausible futures rather
than a single favorable outcome. It can also be said that risk is central in this approach: the
probability and effects of scenarios are explicitly taken into account. Although scenario-
based planning techniques exist for some time [60], robust optimization is a relatively new
approach to handle optimization problems affected by uncertainty, and has only recently
gained notoriety in different fields of science. In [61] an overview is provided of used
methodologies and indicators for robustness in different research areas regarding water
distribution systems, namely, design and planning, operation and management. The
authors argue more research is needed to properly understand the relation between
robustness and the other resilience components, such as redundancy, rapidity and
resourcefulness. Little attention is given to the uncertainty of input variables. In scenario-
based robust optimization models, input variables are often described by scenarios with
a given probability of occurrence. The optimization model then takes all scenarios into
account in order to arrive at a solution that is “robust.” But how can robustness be
quantified? In [47] two types of variables are defined: design variables and control
decision variables. The first refer to the variables whose optimal values do not depend on
the uncertain parameters, while the latter refer to the variables whose values depend on
the uncertain parameters and on the optimal value of the design variables. A generic
robust optimization model is then proposed, consisting in minimizing an objective
function, bound to structural constraints (subject to the design variables) and control
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constraints (subject to both design and control decision variables). Following, a set of
scenarios is introduced, each with an associated probability. By considering the scenarios,
the control constraints might become restrictive, and even lead to a declaration of
infeasibility, hindering the model to find solutions. In order to avoid this, the model is
allowed to consider nearly feasible solutions, or feasible solutions under most (but not all)
scenarios. This aspect is what leads to a particular characteristic of robust optimization:
allowing some constraints to be violated, by considering a specific objective function. This
objective function consists of two terms: a first term quantifying optimality (or solution)
robustness, and a second term quantifying model robustness, in the form of a feasibility
penalty function. This function is used to penalize failures in satisfying the control
constraints under some scenarios and is what mainly distinguishes the robust
optimization approach from other models dealing with uncertainty. It allows the model
to find solutions, even if they are not feasible for all scenarios.

The robust optimization model presented in [47] has been further developed and
adapted to suit different applications such as the expansion of a telecommunications
network [62], the optimization of chemical reactors and the optimization of a fermentation
process [63], the design of biological reactors [64], and many others. Robust optimization
has also found different applications on water supply systems. Watkins and McKinney
[65] introduced robust optimization in water resources problems as a tool to assess the
trade-off between cost, systems performance and reliability; Carr et al. [46,66] addressed
the problem for sensor placement in municipal water systems; Cunha and Sousa [45,46]
and Marques et al. [67] applied a robust optimization approach to the design of WDN. In
[45] the objective function comprises the minimization of the total cost consisting of the
sum of two terms: (1) the deviation of the networks construction cost, and (2) a penalty
cost for the deviation from the desirable nodal heads. The undelivered demand (due to
pressure deficits) is considered as a second level of robustness, added as a penalty term
to the objective function, in [46]. The considered scenarios include deterministic peak
demands combined with extreme events such as pipe failures or a fire at specific locations
in the network. These scenarios are based on expert judgement.

Robust optimization models can also be formulated in terms of the regret of a
solution. The total of overpayment (when a larger system is constructed than is necessary
as the future plays out, the cost that exceeds the actual requirements is an overpayment)
and supplementary (when the implemented design is insufficient to supply actual needs
the explicit cost of expanding an undersigned system to meet the requirements is a
supplementary expense) costs is called “regret cost.” This means that the regret is
understood as the difference between the cost of a solution obtained for a set of scenarios,
and the cost of the optimal solution for each scenario considered individually. Regret
models will not be further described in this paper, but for the interested reader, some
relevant references are [1,48-51,68].

More recently, the consideration of deep uncertainty has started to gain attention in
water resources optimization. This emerges from the recognition that long-term future
conditions should be modelled by considering multiple plausible futures, where it is no
longer possible to estimate probabilities of their occurrence, in alternative (or in
complementary) of quantifiable (local) uncertainty (through stochastic processes and
statistical analysis). Optimization explicitly considering deep uncertainty in its framework
is a challenge, due to the computational burden of such approach. Therefore, robustness
evaluation in this context is often done post-optimization. In [69] the authors developed a
computational efficient optimization approach, by means of a metamodel, for the optimal
sequencing of water resources infrastructure under deep uncertainty, wherein robustness
in included as an explicit objective during the optimization process. This approach might
open the way for more applications in the water sector.
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1.3. Motivation and Real-Life Networks

From deterministic, to stochastic, to robust optimization models, researchers have
produced significant developments on the subject of optimal design of WDN [70].
Traditional deterministic models are very sensitive to modifications in working
conditions, making designs unreliable if reality turns out to be different than planned.
Stochastic and robust optimization models are significantly less sensitive to changes in
working conditions, and therefore definitely the future for the design cost-effective and
safe systems. On the other hand, the stochastic design comes with some challenges. This
type of approach requires a significant amount of data, consists of a complex formulation
and can quickly become computationally heavy and lengthy. This holds especially true
when considering the size of real-life WDN, with hundreds or thousands of nodes and
links, where the computation of optimized deterministic solutions is already a challenge
by itself. All this contributes to making engineers reluctant to use and apply stochastic
models in real-life problems. A scenario-based approach has the advantage of not
requiring a probability distribution for the uncertain variables and might appear
somewhat more straightforward in application. Even so, the size of scenario-based
optimization models is larger and more complex than deterministic models, and increases
with the number of considered scenarios, becoming computationally more demanding.

In this contribution we intend to demonstrate how a scenario-based robust
optimization approach can be applied to a real-life WDN and what the added value of
doing so is.

2. Materials and Methods
2.1. Introduction

It is clear from the literature review that several approaches are possible for taking
uncertainty in input parameters into account when designing WDN. In this paper a
scenario-based robust optimization approach is proposed, i.e., one in which the
uncertainty (in this case with respect to water demand) is described by means of scenarios
with corresponding probabilities. This approach has been chosen for the following
reasons:

—  Although the required computation time of such an approach is larger than
deterministic approaches, it is still expected to be manageable for real-life WDN
(with hundreds or thousands of nodes and links), as opposed to e.g., stochastic
approaches in which a much higher number of Monte Carlo simulations (order of
thousands) need to be computed.

—  This approach recognizes that, in face of uncertainty, it is not always possible to
obtain feasible solutions, i.e., that infeasibilities will inevitably arise. By recognizing
this, the approach will generate solutions that present the decision maker with the
least number of infeasibilities to be dealt with.

—  The approach is applicable to different types of scenarios and can therefore also be
used when considering long-term future scenarios in which changes in water
demand consumption patterns and/or the addition of new neighborhoods or
demand points in the network are taken into account.

—  The approach provides insight into how well (or how poorly) a design continues to
perform under various scenarios, in contrast to approaches which only look at
whether or not the design meets certain boundary conditions.

—  The designer can determine for himself how important meeting the constraints is by
assigning lower or higher penalty coefficients to the optimization problem.

—  The approach fits in well with current practice at, for instance, Dutch water utilities,
were the highest measured demand of the past ten years, is considered as the (one)
design scenario. This increases the chance of successful implementation.
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2.2. Optimization Model

Scenario-based robust optimization models often include two terms: a term for
solution robustness and a term for model robustness. The former, measures how close the
solution remains to the optimum for any realization of the scenarios (and has to do with
“closeness” between the values of the design variables). While the latter measures the
feasibility of the solution, i.e., how good the solution performs under the different
scenarios, often measured through a feasibility penalty function.

In this contribution we explore the model robustness term, i.e., the performance of
the design under the different scenarios. An obvious choice for the model robustness term
is the expected value of the function describing the performance. However, the expected
value ignores the distribution of the performance values around the mean, and thus also
the risk aspect which a decision maker needs to deal with. In cases where decision makers
are risk averse, alternative approaches capable of describing and handling risk are more
appropriate. One possible approach consists of the so-called mean-variance models. In
this type of models, the variance of the outcomes serves as a measure for risk, with a
higher variance meaning the outcome (in this case performance) is much in doubt.

The proposed optimization model is thus based on a “mean-variance model”
[38,46,47,71] and is aimed at finding a design that minimizes the sum of the costs and the
mean and variance of a feasibility function over a set of demand scenarios, i.e.,:

Min. Z?’:Pi Li X C;(Dj) + p (fs) + A+ Var(fy) 1)
where:
w=2¥ps fs 2)
NS
Var(f) = ) ps- (f = 1? 3)
s=1

The first term in the objective function (Equation (1)) corresponds to the cost of the
solution to be implemented: cost of pipe j as a function of its length L; and diameter
associated cost C;(D;) for all NP pipes in the system. The second and third terms in the
objective function are the mean and variance of a function f;, which describes the
performance of the solution under the scenarios: the second term in Equation (1) being
the weighted average of the function f; for the set S of all scenarios, with NS members,
see Equation (2), and the third term in Equation (1) being the variance of the function f;
for the set S of all scenarios, see Equation (3). The probability of occurrence of each
scenario is given by ps. The coefficient A is the so-called variance-factor chosen by the
designer and indicates a degree of risk aversion. By taking into account the mean and the
variance of the function f; a distinction can be made between designs with the same
mean but different performances under the different scenarios. Designs for which the
performance is better, i.e., less penalized, and for which performance deviates less
between scenarios, are thus preferred. When only the mean is taken into account, a design
that performs well on average but very poorly on a specific scenario can be chosen. It can
be said that by taking the variance into account it is easier to control the risk of poor
performance.

The function f; takes into account the performance of the design under the different
water demand scenarios and is described by the following feasibility penalty function:

NN

fi= cpen- (1~ Fw) @
where unsatisfied demands are penalized (being d;; the demand at each node i for each
scenario s and q;s the actual delivered water to the node in scenario s, both for all NN
nodes). This function is based on the “satisfaction rate” [38] and describes the performance

of the design based on the degree of satisfaction of water demand under the different
water demand scenarios. Although there are various definitions of robustness, according
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to [69] robustness metrics based on satisficing criteria are most appropriate, as they align
with the way the performance of water resources systems is generally assessed. For a
given design (for which costs are determined in the objective function), for each node i
and each scenario s the actual water delivered at a single moment in time (q;g) is
determined by the hydraulic simulation of the network model. The water supplied at each
node depends on the pressure at the node and can be calculated through pressure driven
analysis, which can be described by [72]:

( 0 lf Pi,S < Pi,O
Pis=Pio 14 ;
Gis = dis (m) if Pio < Pis < Pimin )
di,s if Pi,s = Pi,min

where, P;; is the actual nodal pressure at node i and scenario s, P, is the minimum
pressure to allow any flow to the node, and P; ,,;,, is the service pressure to fully satisfy
nodal demand. The exponent y is usually set to 0.5.

If the water effectively supplied is lower than the water demand (d; ), a penalty is
given. The magnitude of the penalty depends on the penalty coefficient Cpen (chosen by
the designer) and the extent to which the water demand is not met. Failure to meet the
water demand is therefore a disadvantage to the design. It is important to choose a
suitable value for the penalty coefficient. This can be done either by (1) calculating the
problem with different values and choosing the most appropriate value on the basis of
results and interpretation, or (2) on the basis of performance costs which, based on expert
knowledge or established business strategy, can be described monetarily.

The objective function is constrained as usual in the optimization models for the
design of WDN:

e  Hydraulic equilibrium constraints (satisfaction of flows and head loss in pipes)

e  The diameters for the pipes can only be chosen from a list of commercially available
diameters and only one diameter can be assigned to each pipe

e  Minimum pressure requirements

The decision variables are the diameters of the pipes, D;, in the network model. By
solving the optimization model, it is possible to provide a decision maker with the
information on how to dimension a network (i.e., which diameters to choose for the pipes)
in order to achieve a certain level of robustness.

2.3. Water Demand Scenarios

The proposed optimization model requires the definition of water demand scenarios
and probabilities of occurrence.

A water demand scenario is understood as a combination of (peak) water demands
which occur simultaneously at the different consumption nodes in the network and can
be described by means of a vector:

D; =[dysdysrdns]|,  fori=12,..,nand s=12,..,S (6)

where D; is the demand vector for scenario s, and d;; the (peak) demand at node i for
scenario s. The probability of occurrence of the scenario is ps.

To determine D; and p; different approaches are possible. Consulting a panel of
experts (an approach often followed in scenario-based optimization) is seen as a good
solution but leads to subjective quantification of scenarios and probabilities. Following a
more objective approach is desirable, and different methods are available in literature.
However, there is no general consensus on which type of approach is best suited to which
application, or which information and level of detail should be taken into account. In this
contribution two different approaches are followed, one based on historical
measurements and one based on exploring alternative future scenarios, both explained in
the following sections.
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2.3.1. Demand Scenarios Based on Historical Records

The first approach proposed for generating water demand scenarios is a top-down
approach based on historical records measured at pumping stations. One can say that in
this approach uncertainty is characterized as being statistical or probabilistic [73]. In this
approach, the demand pattern (and peak factor) at the pumping station is distributed
equally among all nodes (and users) in the area supplied by the pumping station. This
means that it is assumed that all users have the same demand pattern and that the peak
demand occurs at all nodes in the network at the same time. This is of course a
simplification of reality. This approach allows to estimate the probability distribution for
peak demands, based on long-term measurements (time series), assuming that this
distribution is constant over time. The advantage is that the statistics of water demand are
based on measurements, so the “real” variability is taken into account. Moreover, this
approach is followed by Dutch water utilities to determine the design demand: the highest
consumption of the last 10 years measured at pumping stations supplying a supply area.
In this way, the proposed approach is in fact an extension of current practice, but instead
of determining one single peak demand, it determines several peak demands, Ds, with
different probabilities p;. The disadvantages of the approach are that (1) it requires long-
term measurements (not often available), (2) it assumes the same demand pattern for all
users in a network and (3) it assumes that the probability distribution of past
measurements is representative of future behaviour. The following steps are proposed to
generate water demand scenarios from flow measurements at a pumping station, or inlet
of a supply area:

1. Data collection and preparation: these steps include the collection of long-term time
series measured at the pumping station or inlet of a supply area, the identification
of gaps and erroneous measurements and, consequent correction of the time series.

2. Statistical analysis: includes the estimation of the time series of peak demand
factors, i.e., the maximum demand occurring each day (at a minute or hourly basis,
depending on the available data) divided by the average demand over the entire
measured period, and estimation of the corresponding cumulative probabilities.

3. Scenarios: this step includes the choice of the desired number of scenarios to
consider, the choice of the same number of peak demand factors, the estimation of
scenario probabilities (cumulative probability of the scenario minus the cumulative
probability of the scenario with lower peak demand factor) and the assignment of
these peak demand factors to the nodes in the network model (if necessary,
updating the average water demand in the network model).

2.3.2. Future Water Demand Scenarios

The approached previously described results in historical water demand scenarios.
This implies the assumption that the future will be as the present. However, the future
may differ due to e.g., changes in population (including average household and family
composition), buildings, activities, water using devices, people’s behaviour (e.g., more
environmentally conscious or comfort oriented behaviour) and circumstances (e.g.,
climate change). Drinking water systems, designed on the basis of historical peak
demands, will not work optimally when water demand changes dramatically, e.g., by
installing comfort rain showers instead of water-saving showers. An alternative would be
the consideration of multiple plausible scenarios [73]. The steps for the top-down
approach for generating historical water demand scenarios can be adapted and used to
generate future demands scenarios. In this case, the starting point is not a time series of
measurements but requires the generation of a time series of future water demand values.
Such a time series can be generated on the basis of the approach developed in [6]. In the
aforementioned study 13 scenarios were developed, one being the current average water
demand and 12 scenarios are based on changes in demographics, policy and technology.
Table 2 contains a description of the scenarios.
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Table 2. Future water demand scenarios described in [6].

Scenario Name Description
F1 Now Baseline: current situation
Regional Communities: per capita demand declines because the economic downfall results
F2 RC in (water) saving behavior, coupled with decreasing population. The average age of the
population increases.

Strong Europe: despite low economic growth, mobility increases due to open borders.

3 SE Personal hygiene habits have changes with an increase in shower frequency. Water pricing
based on real costs drives alternative water resources to be adapted on a larger scale, e.g.,
rain water tanks for watering the garden.
Fa ™ Transatlantic Market: population growth causes increase in drinking water demand.
Innovation is aimed at luxury and wellness products.

Global Economy: economic growth causes an increase in consumption. Innovations are

F5 GE aimed at luxury and wellness. People shower longer and water their garden more
frequently to cope with the effects of climate change.
6 Dual Toilet, laundry machine and outside tap are not supplied by the drinking water
distribution systems.
F7 Eco_RC  Based on RC but with innovative sanitation concepts. 100% adaption of 1 L flushing toilets.
F8 Lux. Luxury, based on current situation with 100% adaptation of luxurious showers.
F9 GE+ Based on GE but with a shower frequency of one shower per day.
F10 Leak Based on current situation but with leakage equal to 20%.
Based on current situation with 100% adaptation of luxurious shower, with dual system for
F11 Lux. + dual . .
toilet, laundry and outside tap.

Adoption of innovative sanitation concepts plus water use efficient showers, washing

F12 Eco+ . .
machines and dishwashers.

F13 DP Diminishing population: 30% reduction of the population in the area due to emigration

(empty houses).

For all these 13 future scenarios the water demand for an average day, and for a given
supply area, can be simulated with SIMDEUM [74]. For the approach proposed in this
paper, it is necessary to consider, not the demand on an average day, but different peak
demand scenarios and corresponding probabilities. This means that to use the scenarios
developed in [6], it is necessary to multiply these by a peak factor and assign probabilities
of occurrence. To do so, we assumed the peak factors based on historical measurements,
and assigned an equal probability (due to unpredictability) to each scenario. As with the
approach described in the previous sub-section, the average and peak demand factors are
then assigned to each node in the network model.

2.4. Optimization Tool

To solve the proposed optimization problem the generic optimization tool for
drinking water networks, Gondwana [75,76] was used. Gondwana has been recently
updated to perform hydraulic simulations in EPANET 2.2 [77], and uses the Inspyred
library [78] for metaheuristic optimization methods, in particular (modified) genetic
algorithms are used.

Applying optimization techniques to real-life WDN is not without challenges [79],
one of them being the computational effort involved in exploring (very) large solution
spaces and being able to converge to optimal solutions. In order to deal with this, specific
variators to tune a genetic algorithm to the optimization of a least cost design were built
in Gondwana, namely the heuristic “flatiron” and the “list proximity” mutators [76].
Classic mutation can cause a larger diameter pipe to be surrounded by smaller diameter
pipes, which is hydraulically insensible. The flatiron mutator speeds up convergence by
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detecting and “smoothing out” these artifacts. In this way, the flatiron mutator guides the
search through the solution space and helps reducing the number of iterations needed to
achieve convergence. The list proximity mutator enhances convergence by using system
specific knowledge to generate solutions highly likely to be viable, specifically by limiting
the possible outcomes of a mutation to diameters close to the original value. This does not
guide the search but avoids spending time evaluating unfeasible solutions. Besides, the
current design values of the WDN (installed pipe diameters) are used in the initial
population. These designs are often relatively good solutions, and thus a good starting
point for the search.

2.5. Case Study and Workflow

The proposed methodology was applied to the network model representing part of
the WDN serving city S in the Netherlands (chosen to be kept anonymous by the water
utility). The network model consists of 497 nodes, 474 pipes and one reservoir, see Figure
1. For real-life networks, this is relatively small. It is therefore considered as a good (first)
case study to test the feasibility of applying a scenario-based robust optimization model
to real-life WDN. The available diameters are summarized in Table 3. A meter price of 1
euro per mm diameter can be assumed to determine the construction costs.

The flowchart in Figure 2 illustrates the work process followed, starting from the
generation of demand scenarios, serving as inputs for the optimization models, the
computation of results with the use of Gondwana, and finalizing with the post-evaluation
of these results under the water demand scenarios not considered during the optimization
process.

Table 3. Available pipe diameters for the re-design of the WDN.

Pipe Diameters (mm)
34 58.2 101.6 147.6 184.6 230.8

)
&

Figure 1. Network model for the WDN serving part of city S in the Netherlands. This network model consists of 497 nodes,
474 pipes and one reservoir. Valves are also depicted in the figure.
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Figure 2. Flowchart illustrating the work process, from the generation of the water demand scenarios as inputs to the
optimization models, the different considered optimization models, and lastly the computation and evaluation of different

design solutions.

3. Results
3.1. Water Demand Scenarios
3.1.1. Historical Scenarios

The Dutch water utility Dunea provided time series corresponding to 14 years of
measurements of the total consumption of the supply area of Wassenaar (ca. 27,000
inhabitants), in the Netherlands, with a 5-min time resolution. Together with the water
utility, the time series was checked for gaps and erroneous data and corrected were
necessary. The steps described in Section 2.3 were considered to generate water demand
scenarios. In Table 4 an example with 5 scenarios is provided. For each scenario the peak
factor, cumulative probability and scenario probability are given. As can be seen from the
results, the peak factor does not vary very much, being between 2.32 and 2.82 for the
chosen scenarios.

Table 4. Example of 5 water demand scenarios and corresponding probabilities estimated based
on the measurements at the supply area of Wassenaar, The Netherlands (Dunea).

Scenario Peak Factor Scenario Probability
H1 2.32 0.53
H2 2.45 0.24
H3 2.56 0.14
H4 2.64 0.05
H5 2.82 0.04

3.1.2. Future Scenarios

With regard to the future water demand scenarios, in [6] the proposed methodology
was used to generate the total average water demand for the network model serving part
of city S in the Netherlands, see results in Table 3. It was then decided to take the peak
factor with an exceeding probability equal to 1% from Wassenaar’s historical data into
account to determine the corresponding peak water demand for the 13 future scenarios.
This means that it is assumed that the average water demand changes according to
demographic and technological developments described in the future scenarios, but that
the peak factor remains equal to the historical peak factor. In the case study, this means
that for each future scenario the average water demand of the scenario is multiplied by
2.82 (see Table 5). Of course, this is only an assumption to illustrate the case study. In a
real application, this aspect certainly merits more attention. Based on the description of
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the scenarios it is to be expected that peak factors for the various future scenarios differ.
For example, in scenario GE the peak factor is expected to be higher than in scenario SE,
in which rainwater is used to water the garden. With respect to the probability of
occurrence of each scenario it was decided to assign an equal probability (due to
unpredictability) to each scenario, i.e., equal to 1/13.

Table 5. Average water demand for city S for different future scenarios [6], and assumed values
for the peak factor and scenario probabilities.

Scenario Average Demand (m? day) Peak Factor Probability
F1-Now 363 2.82 1/13
F2-RC 250 2.82 1/13
F3-SE 255 2.82 1/13
F4-TM 280 2.82 1/13
F5-GE 310 2.82 1/13
F6-Dual 165 2.82 1/13
F7-Eco 265 2.82 1/13
F8-Lux 510 2.82 1/13
F9-GE+ 350 2.82 1/13
F10-Leak 440 2.82 1/13
F11-Lux+ 320 2.82 1/13
F12-Eco+ 140 2.82 1/13
F13-DP 225 2.82 1/13

3.2. Optimization Results

In order to assess the outcomes of the proposed scenario-based robust optimization
model, the problem was solved for both the demand scenarios based on historical data
and the future demand scenarios, and for different values of the penalty coefficient (Cpen
in Equation (4)) and the variance-factor (4 in Equation (1)). A minimum pressure equal to
10 m was considered as a constraint, and a service pressure (P; ;) equal to 20 m was
considered to fully satisfy nodal demand. By considering pressure-driven demand
analysis, it is possible to compute the demand that is actually delivered to each node of
the network for each considered scenario.

To put the results into context, the pipe diameters of the current infrastructure are
depicted below in Figure 3. These pipe diameters lead to a design cost of 792 k€. With this
design the lowest pressure in the network during the peak demand in the model
(corresponding to a peak factor (PF) equal to 2.77) is equal to 34.15 m. To further
contextualize the results, a deterministic optimization problem was solved considering
the peak demand factor in the network model (2.77), and a minimum pressure constraint
equal to 20 m (i.e., the service pressure to supply 100% of the water demand). This
deterministic problem corresponds to a specific case of the optimization model described
in Section 2.2, wherein only the first term of Equation (1) is considered (i.e., minimization
of costs as a function of the diameter and length of the pipes) and a minimum pressure
constraint of 20 m. The obtained design costs are in this case 459 k€, after 1 x 10¢ function
evaluations. The corresponding pipe diameters are depicted in Figure 4. This first result
shows the added value of considering optimization techniques for designing real-life
WDN: it is possible to achieve a significantly leaner network while at the same time
satisfying all deterministic peak demands in the model.
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Figure 3. Pipe diameters of the infrastructure currently installed. The different colors indicate the diameter for each pipe
(links in mm) and the pressure at the nodes (nodes in m) for the deterministic water demand in the hydraulic model (PF

=2.77). The minimum pressure in the network is 34.15 m.
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Figure 4. Pipe diameters for the optimized deterministic design of the WDN. The different colors indicate the pipe
diameter for each pipe (links in mm) and the pressure at the nodes (nodes in m) for the deterministic water demand in the
hydraulic model (PF =2.77). The minimum pressure requirement of 20 m is met at all nodes in the network. Diameters are

significantly decreased when compared to the diameters of the currently installed network (Figure 2).



Water 2021, 13, 753 15 of 25

The obtained results for both historical and future demand scenarios are summarized
in the following sections. An evaluation of the performance of the design solutions
obtained considering the historic demand scenarios on the future demand scenarios, and
vice-versa, is also performed.

3.2.1. Optimization Results for Historical Scenarios

Table 6 summarizes the obtained design results when considering the historic
demand scenarios. For each of the solved optimization problems (OP) it is reported: the
considered variance-factor (4 in column 2), penalty coefficient (Cpen in column 3), the
outcome design costs of the chosen solution (column 4) and the corresponding
performance under each of the considered historic demand scenarios and the weighted
total, in terms of undelivered demand (columns 5-10). Undelivered demand equal to zero
means that the demand of the scenario is fully satisfied. The results were obtained after a
maximum of 1 x 10¢ function evaluations. Of course, for each solution the diameters of all
pipes in the network were obtained, and this is the information decision makers need
when planning their infrastructure. Since the network comprises 474 pipes, the
corresponding diameters are not extensively reported in the results.

Table 6. Summary of the results obtained for the different optimization problems considered.

Undelivered Demand (m3) —Historic Scenarios

or 4 Cpen  Costs (k€) H1 H2 H3 H4 H5 Total
1 1% 100 4334 38x100  73x107  11x100 14x100 22x10° 69x10"
2, e 4351 27x100  58x101  92x107  12x100 19x10° 55x 107
3 1x10¢ 4377 00x10°  00x10°  00x100 66x103 45x102 21x10°
4 1% 106 4810  00x10°  00x10°  00x10° 00x100 1.8x10° 7.1x10°
5 1x 100 1348 29x107 59x100  91x107  12x100 20x10°  5.6x 10"
6 1% 102 438 14x107  30x100  50x100  68x101  12x10° 3.0 x 10
7 1x10¢ 444 00x10°  00x10° 7.6x10% 20x105 18x104 9.1x10%
8 1% 100 5092 00x10°  0.0x10°  0.0x100  0.0x100  00x10° 0.0 x10°

In the optimization problems numbered 1-8 the mean-variance robust model is
solved taking into consideration different values for the variance-factor and penalty
coefficients for not satisfying water demand. In particular, the penalty coefficients vary
between 1 and 1 x 10¢, and the variance-factors are equal to 0.1 and 1. This gives an idea
of how these parameters influence the results and/or push the optimization process in a
certain direction.

From the results summarized in the table it can be seen that higher penalty coefficient
leads to higher design costs and a better performance under the different scenarios: the
total weighted undelivered demand decreases. The performance under each individual
scenario also becomes clear: the undelivered demand increases from the historical
scenarios H1 to H5, as these scenarios become increasingly more demanding (peak
demand increases from HI1 to H5). When increasing the penalty coefficient, the
undelivered demand in each scenario decreases, and for the higher penalty coefficients,
the demand is fully delivered for some (or all) scenarios. This behavior is enhanced when
considering the higher variance-factor: for the same penalty coefficients, the costs are
higher and the total undelivered demand under the scenarios is lower. Figures 5 and 6
provide further insight into these relationships.
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1 = 10° 1 =10 1= 10° 1 =107 1 =107 1= 10° 1= 10°

Penalty coefficient

Figure 5. Relation between the design costs and the considered variance-factor (A) and penalty coefficient (Cpen) in the
optimization model (considering historic demand scenarios). The different colors indicate the considered variance-factor
in the optimization model. The costs are higher for the higher variance-factor (A = 1).

1= 10° 110! 1 =107 1 =10° 1 =107 1 =10° 1=10°
Penalty coefficient

Figure 6. Relation between the total undelivered demand (m?® during peak hour) and the considered variance-factor (A)
and penalty coefficient (Cpen) in the optimization model (considering historic demand scenarios). The different colors
indicate the considered variance-factor in the optimization model. The total undelivered demand under the historic
scenarios is lower for the higher variance-factor (A = 1).

As expected, Figures 5 and 6 show that cheaper designs are obtained when lower
penalty coefficients are considered, but these designs do not fully meet the water demand
under the considered scenarios. As the penalty coefficients increase the designs become
more expensive but improve in performance, i.e., the network’s capacity to actually
deliver water demand under all different demand scenarios.

In terms of the design costs the influence of the variance-factor is clear: for a variance-
factor equal to 1 the design costs are higher than the design costs obtained for a variance-
factor equal to 0.1, and this difference increases for higher penalty coefficients. This is
expected, since higher variance-factors ‘push’ design costs to be more expensive, in order
to reduce risk.
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In terms of the performance, by taking a higher variance-factor into consideration,
solutions have lower undelivered demand and converge faster to solutions with zero or
close to zero undelivered demand.

It has to be noted that the undelivered demand in the case study is always relatively
low, so it is valid to question if the water utility would be willing to invest more in order
to reduce further an (already) very low demand deficit.

Figure 7 provides further insight into the influence of the variance-factor on the
results. From this it can be seen that the difference in variance between performances (in
terms of undelivered water) under the various historic scenarios, for a variance-factor
equal to 0.1 (orange line) and 1 (grey line) is significant. The variance between the
undelivered demand under different scenarios of the designs obtained by taking a higher
variance-factor is lower, and thus these designs are more robust, although there is of
course also a difference in terms of design costs.

1 =10 1= 10° 1 =107 1= 107 1= 10° 1 s 107

Penalty coefficient

Figure 7. Variance between the performance of the solutions under different historic scenarios (i.e., the undelivered
demand), for different values of the variance-factor (A = 0.1 in orange and A =1 in grey) and penalty coefficients (Cpen).
The variance between the undelivered demand under different scenarios decreases with the penalty coefficient and is kept
lower fora higher variance. A higher variance-factor increases the robustness of solutions.

3.2.2. Optimization Results for Future Scenarios

In the optimization problems numbered 9-12 in Table 7, the mean-variance robust
model is solved for the 13 future water demand scenarios, taking into consideration
different values for the penalty coefficient and a variance-factor equal to 1. For each of the
solved optimization problems (OP) it is reported: the penalty coefficient (column 2), the
outcome design costs of the chosen solution (column 3) and the corresponding
performance under each of the considered future demand scenarios and the weighted
total, in terms of undelivered demand (columns 4-17). Undelivered demand equal to zero
means that the demand of the scenario is fully satisfied. The results were obtained after a
maximum of 1 x 106 function evaluations. Note that for the future demand scenarios, the
obtained design solutions for the different penalty coefficients, always fully satisfy the
demands for scenarios F1-7, F9 and F11-13. Only for scenarios F8 (Lux.) and F10 (Leak)
the demand is not always satisfied.
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Table 7. Summary of the results obtained for the different optimization problems considering the future demand

scenarios.
OP Cren Costs Undelivered Demand (m? —Future Scenarios
b (k€ F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Total
9 1x102 4808 0 O 0 O 0 O 0 17x100 0 26x10t 0 0 0 15x10
10 1x10® 4827 0 0 O O 0O O 0 19x10* 0 63x108 O 0 0 15x10°
11 1x10¢ 4869 0 0 O O 0 O 0 46x10¢ 0 00x100 O 0 0 35x107
12 1x10e 501.7 0 O O O O O O 0 0 0 0 0 0 0
Figure 8 illustrates the relation between costs and undelivered demand for the
different obtained design solutions.
5.0DE=05 o
3 L90E05
S . o B
485E+05 / "R
A 004 &
LEDE-D5 o
4 75E+DB 0.00
1= 10° 1= 10° 1 =107 1107

e o5t s Undelivered demand

Figure 8. Relation between the design costs (axis y1, blue curve) and the total undelivered demand (axis y2, in m3 during
peak hour, orange curve,) for different values of the penalty coefficient (Cpen) in the optimization model when taking
future demand scenarios into consideration. Fully satisfying demand under all future scenarios requires higher investment
costs in the network.

Figure 8 shows that as the penalty coefficient increases, so do the design costs, and
the amount of undelivered water decreases. Design costs are higher than in the
optimization problems with water demand scenarios based on historical data, but still
lower than the current design. The water demand varies more when considering the
future scenarios, but it was assumed all scenarios have the same probability of occurrence.
Thus, the scenario with the highest water demand weighs as much as the scenario with
the lowest water demand. As a result, larger networks are designed. In the optimization
problems with scenarios based on historical water demand, the probabilities are different
for each scenario: the most demanding scenario has a small chance of occurrence and
therefore weighs less in the optimization problem. Assigning different probabilities to the
future scenarios would therefore possibly lead to different results.

3.2.3. Design Trends and Performance of Design Solutions

Figure 9a—d illustrates some of the obtained design solutions, namely the pipe
diameters obtained considering different values for the variance factor and the penalty
coefficients, and historic and future scenarios. The different colors in the figures represent
different pipe diameters, usually ranging from 34 to 148 mm (with one exception in Figure
9c, where pipes closest to the reservoir have a diameter of 184.6 mm). The costs of the
solutions, and the total undelivered demand for both historic and future scenarios are also
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summarized under each figure. It can be seen from the figures that a there is a “backbone”
for the infrastructure, comprised of pipes with larger diameters, with subsequent pipes
with smaller diameters (dark blue, 34 mm). The differences in design are mainly visible
along this “backbone”: a first reinforcement of the system happens along the path that has
already larger diameters (see changes from Figure 9a to b and d), where more pipes along
this path are increased in diameter. An alternative reinforcement (Figure 9c, which is able
to satisfy demands in all historic and future scenarios, but at a much higher cost) choses
to increase the pipe diameters along a second path.
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(a) OP 3 (Historic scenarios, 4 =0.1, Cpen =1)

Costs = 433.4k€

Total undelivered demand (hist. scenarios) = 0.69 m?
Total undelivered demand (fut. scenarios) = 1.74 m?

(b) OP 11 (Historic scenarios, 4 =1, Cpen =1 x 10%)
Costs =444.4 k€

Total undelivered demand (hist. scenarios) =9.1x 107 m?
Total undelivered demand (fut. scenarios) = 0.51 m?
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(c) OP 12 (Historic scenarios, A =1, Cpen =1 x 10°)
Costs =509.2 k€

Total undelivered demand (hist. scenarios) = 0 m?
Total undelivered demand (fut. scenarios) = Om?

(d) OP 16 (Future scenarios, 1 =1, Cpen=1x 10%)
Costs =486.9 k€

Total undelivered demand (hist. scenarios) = 0 m?

Total undelivered demand (fut. scenarios) = 3.5x 107 m?

Figure 9. Design solutions obtained for different optimization problems, considering different scenarios (historic or future)
and different values for the penalty coefficient (Cpen) and variance factors (A). The different colors indicate the pipe
diameters, ranging from 34 to 184.6 mm. The diameters along some of the paths (constituted by several pipes) are indicated
with numbers. Designs with lower costs are not able to fully satisfy the demands for both historic and future scenarios
(for instance, solutions (a,b)). By increasing more pipe diameters, design costs increase, but it is possible to fully satisfy
demand under all scenarios, both historic and future (solution (c)), or for all historic scenarios and almost all future
scenarios (solution (d)). This provides the decision maker with the information on how do dimension the network to
achieve a certain level of robustness.

The performance of the design solutions obtained considering the historic demand
scenarios under the future demand scenarios was also evaluated. Table 8 summarizes
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these results. The performance of the deterministic design is also included. The
deterministic design solutions are not able to meet the demand of future scenarios 8 and
10, but performs relatively well. Regarding the design solutions obtained considering the
historic demand scenarios, these are, in general, not able to meet the demand of different
future scenarios. Future demand scenarios 2, 6, and 12, are always fully satisfied.
Scenarios 3, 7 and 13 are mostly satisfied. Scenarios 8 and 10, followed by scenario 9, are
the ones putting more stress on the system. Only the more robust design solution,
obtained for a variance-factor equal to 1 and the highest considered penalty coefficient is
able to meet the demand under all possible future scenarios.

Table 8. Performance of the design solutions obtained considering the historic scenarios under the future demand
scenarios. The performance is evaluated in terms of undelivered demand (m?).

Undelivered Demand (m3) —Future Scenarios

OF 4 Cpen =™ ® F3 T4 F5 F6 F7  Fs F9  F10 F11 F12 F13 Total
1 1x100 220 000 001 015 070 000 003 1056 190 608 096 000 0.01 1.74
2 ,, 1x10° 191 000 001 009 05 000 002 994 164 55 079 000 001 158
3 7 1x10¢ 005 000 000 0.00 000 000 000 490 003 185 000 000 000 053
4 1x10° 000 000 000 0.00 000 000 000 146 000 037 000 000 0.00 0.14
5 1x10° 196 000 001 011 057 000 003 1004 167 584 079 000 001 1.62
6 , 1x10° 116 000 000 005 029 000 001 725 098 3.8 043 000 000 108
7 1x10* 000 000 000 0.00 000 000 0.00 465 000 193 000 000 0.00 051
8 1x10° 000 0.00 000 0.00 000 000 000 000 000 000 000 000 0.00 0.00
Det. - - 000 000 000 000 000 000 000 226 000 044 000 000 000 021

The same exercise was performed for the solutions obtained considering the future
demand scenarios. In this case, the different design solutions are always able to meet the
demand under all historic scenarios. The same happens for the optimized deterministic
design solution, which takes a “harder” minimum pressure constraint into consideration.

4. Discussion

This research shows that it is feasible to apply scenario-based robust optimization
methods to the design of real-life WDN, and that, by means of the chosen “mean-variance’
model, focused on the model robustness term, it is possible to take different water demand
scenarios into account during the design process, resulting in more insight into the
performance of a design and ultimately in a more robust solution. To our knowledge,
although mean-variance models are widely applied in different fields of science, this
approach (including modelling both historic and future demand scenarios) has not been
applied to the design of a real-life WDN before. By applying this model to a case-study a
trade-off between robustness and design costs is quantified. This allows the decision
maker to make an informed and substantiated choice to accept some relatively small
underperformance of a design in extreme situations in favor of a substantial cost
reduction, or to not accept it if that is desirable. The designer controls the degree of risk
aversion by adjusting a penalty coefficient for underperformance and a variance-factor to
take variance between scenario performances into account. The core and final outcome is
then, to provide the decision maker with the optimal diameter for each pipe in the
network necessary to install in order to achieve the chosen level of robustness. In this way,
a water utility knows how to dimension its network when replacing pipes.

With regard to the scenarios itself, identifying the scenarios and assigning
probabilities to them is a daunting and difficult task. From the case study in this
contribution, it is shown that it is possible to compute substantiated water demand
scenarios based on historical records of water consumption. This also makes it possible to
assign probabilities to different peak factors, which is a strong advantage. However, the



Water 2021, 13, 753

21 of 25

obtained results also show that this leads to design solutions less able to cope with out of
the ordinary changes in water demand. It is therefore also important to explore scenarios
outside the historical range. Estimating future scenarios for water demand remains
however somewhat more difficult; in particular, assigning probabilities to these type of
scenarios remains a subjective step and there is room for improvement on this aspect, with
regard to the approach followed in this contribution. For instance, one might think of
extending the proposed approach, by estimating future daily and peak demands, in
function of climate change, spread of vacation periods and specific characteristics of the
supply areas. For example, the model described in [11] can be used as a basis. With this
model it is possible to estimate average and daily factors for future water demand. Hour-
or instant peak factors, important for the design of WDN, are not currently predicted by
these models. This means, therefore, that additional research is needed in order to use the
aforementioned approach to generate water demand scenarios for the design of WDN.
Another aspect to consider regarding the water demand scenarios, is that, in this paper, a
top-down approach is followed, where the peak factor measured at a pumping station is
attributed to all nodes of the network model. A bottom-up approach would also be an
interesting approach. In such an approach demands are simulated per node in the
network model, depending on the characteristics of customers at each node. The choice
for a top-down or bottom-up approach should be mirrored to the type of distribution
network considered. For example, a top-down method would be more appropriate for
larger urban areas, whereas for smaller neighbourhoods a bottom-up approach seems
more appropriate.

The case study further shows that, for the deterministic approach, applying
numerical optimization techniques results in a significantly smaller (and therefore
cheaper) design (the costs of the optimized design are only 58% of the costs of the current
existing infrastructure if rehabilitated as is), while still meeting the water demand at all
nodes. A leaner design is not only cheaper but is also better for water quality, reducing
residence time and increasing flow velocity, which in turn improves customer satisfaction
and also reduces the need for flushing pipes. When sizing a network, designers deal with
huge solution spaces. Numerical optimization is definitely a valuable tool to explore these
in an efficient manner.

With an approach based on the mean-variance model, and focused on the model
robustness term, it is possible to know how to dimension a network in order to satisfy
demand under different scenarios. As expected, more expensive designs better meet
pressure and water demand under different scenarios. Quantifying this is valuable for
decision makers. The different obtained solutions show which pipes need to be reinforced
(and by how much) in order to cope with the more extreme future scenarios. The variance-
factor has an important impact on results: considering a higher variance-factor leads to
designs that perform better under the various scenarios than when a lower variance-factor
is considered, for the same penalty coefficients. The variance between the performances
for the different scenarios is also much smaller for the higher variance-factor. This means
that the designer is more certain of how the design performs under different scenarios.

The influence of the considered scenarios should also not be overlooked. The
obtained results indicate that considering future demand scenarios, with larger
differences amongst them (and in this case assuming the same probabilities of occurrence)
leads to more robust (although more expensive) solutions. These solutions perform well
also for different peak demand factors derived from the historic data. The same cannot be
said about the designs obtained considering the historic demand scenarios; in general,
these solutions underperform for some of the future demand scenarios, exception being
the solution obtained for the highest variance-factor and penalty coefficient considered.

5. Conclusions

In this paper it is shown that it is possible to consider different water demand
scenarios in the optimal design of WDN through a mean-variance model focusing on
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model robustness. This provides insight into the trade-off between costs and robustness
of design solutions, enabling water utilities to make well-founded choices about how
much to invest in their infrastructure when it comes to being prepared for every
eventuality. Moreover, it provides the decision maker with information on how to achieve
a certain level of robustness in the network, i.e., the diameters that should be installed in
order to meet demands under different scenarios. With this information in hands, water
utilities know how to prepare their infrastructure for the future.

Different methods to generate water demand scenarios lead to different design
results, in terms of costs and performances. Both approaches for generating historic and
future demand scenarios have advantages and limitations. While historic demand
scenarios are more substantiated, since they enable statistical analyses, they lead to design
solutions less able to cope with ‘unusual’ changes in demand. Historic demand scenarios
have thus their limitations, and this highlights the need to also consider the unknown
when designing infrastructures that need to perform well on the long term (and thus, in
the uncertain future). Considering future demand scenarios, although being a more
subjective approach, has the advantage of including out of the ordinary analyses. In the
considered case study, the design solutions obtained considering the future demand
scenarios are somewhat more expensive (~10%) but are able to perform well for both
historic and future scenarios. The relevant questions are then if it is worthwhile to invest
a little more in the infrastructure in trade of more certainty in the performance in the
future. The generation of future demand scenarios deserves more attention in future
research.

From the obtained results it is also possible to conclude that applying optimization
techniques to the design of a real-life WDN, leads to a significantly leaner network. In the
considered case, the costs of the optimized design are only 58% of the costs of the current
existing infrastructure. This design is however not able to fully satisfy demand under all
future scenarios, highlighting the drawback of deterministic approaches.

To finalize, it is our belief that thoroughly quantifying water demand uncertainty
and including it in optimization problems represents a step forward in the robust design
of real-life WDN.
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